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Abstract

We prove that integrable hierarchies of evolution
equations can be obtained from a unique gauge the-
ory by gauge fixing conditions. The bi - Hamiltonian
structures of these hierarchies are generated by the
corresponding Dirac brackets and deformations of a
BRST differential.
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1 Introduction

In the present work we find new formulations

for the integrability conditions of Hamiltonian

systems of evolution equations.

Using a variational approach, we prove that:

• any Hamiltonian evolution equations can be

derived from a quantum BRST field theory.

The gauge fixing fermion determines the Pois-

son structure and its deformations the ex-

istence of an infinite number of compatible

brackets.

• Hamiltonian systems with an exact two form

are derived from a singular action with sec-

ond class constraints. The separation of this

system of constraints into first class and gauge

fixing ones can be used to prove the existence

of bi-Hamiltonian and thus integrable struc-

tures.
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2 Hamiltonian systems and the ghosts

In this section we show that any Hamiltonian

system of evolution equations can be regarded

as a classical field theory with a BRST-anti-

BRST exact effective Hamiltonian.

Notations:

Let F be the space of functionals R =
∫
Rdx,

where the differential functions R (x, φ) ≡ R [φ]

are defined on M ⊂ X × Φ, an open set of

the space of independent and dependent vari-

ables x =
(
x1, ..., xp

)
and φ =

(
φ1, ..., φn

)
Let Ω : An → An be a n × n matrix skew-

adjoint differential operator which may also de-

pend on φ; A - the algebra of differential func-

tions R [φ] over M .
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Theorem 1

The Poisson bracket defined for any two func-

tionals in F by the operator Ω:

{G1,G2}Ω =
∫
δG1 Ω δG2dx (1)

can be expressed in terms of a standard BRST

bracket {., .} and/or of a QΩ - bracket, on an ex-

tended space: M̃ = X×Φ̃, with Φ̃ = (φ, π, C,P),

where π,C,P are auxiliary variables.

Q =
∫
dxCaπa

QΩ = − ∫
dx

(
PaπbΩba + 1

2PaPbC
cδcΩ

ba
) (2)

The conjugated variables (φ, π) and (C,P)

satisfy:

{φa (x) , πb (y)}x0=y0 = δab δ (x− y)

{Ca (x) ,Pb (y)}x0=y0 = δab δ (x− y)
(3)

{G1,G2}QΩ
≡ 1

2 {{G1, QΩ} , {Q,G2}}−
1
2 {{G1, Q} , {QΩ,G2}}

(4)
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Consequence:

If the chargeQΩ defines a nilpotent differential

sΩ. ≡ {QΩ, .}, {QΩ, QΩ} = 0,

then: the differential operator Ω is Hamilto-

nian since the corresponding bracket (1) satisfies

the Jacobi identity.

Note also that: the BRST charge Q in (2) de-

fines a nilpotent differential s ≡ {Q, .} by con-

struction.

Theorem 2

Any system of Hamiltonian evolution equa-

tions:
∂φa

∂t
= Ωab δbH [φ] (5)

with a Hamiltonian functional H =
∫
Hdx is

given by the equations of motion:
.
φ
a
=

{
φa,Heff

}
= {φa,H [φ]}QΩ

(6)

of a field theory having: Heff = {Q, {H [φ], QΩ}}
The equations of motion can be derived from

Leff =
∫
dxLeff with:

Leff = πa
.
φ
a

+Pa
.
C
a −Heff (7)
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and:

Heff = πaΩ
abδbH + PaCaδb (Ω

acδcH) (8)

Geometrical interpretation: Ca : basis of forms,

dφa and Pa : basis of vector fields.

Grading:

gh (φ) = gh (π) = 0

gh (C) = 1

gh (P) = −1

gh (s) = 1

gh (sΩ) = −1

gh (H [φ]) = gh
(
Heff

)
= 0

(9)

Consequence: a conserved functional G satis-

fies:

δG Ω δH = 0 (10)

<=>

{
G,Heff

}
= {G,H}QΩ

= 0 (11)
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In cohomological terms: sG belongs to the co-

homology of sΩ at ghost number 1 (the groups of

the generators of non-trivial global symmetries).

3 Bi-Hamiltonians from gauge-fixing

In this section we prove that the bi-Hamiltonian

structures of an integrable system are obtained

from gauge fixing invariance of the associated

field theory.

Theorem 3

Let s, s0, H0 be the symmetries and the func-

tional defining the BRST field theory correspond-

ing to a given PDE system.

Let the theory be non - anomalous, i.e. the

cohomology groups of s and s0 are trivial for

ghost numbers ≥ 1 and ≤ −1, respectively.

If a one-parameter deformation of the symme-

try exists, so that:

s1s0H0 = 0 (12)
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then:

(i) the original system is bi-Hamiltonian, there

exists an infinite number of conserved functionals

H1,H2, ...,Hm, ... and

(ii) the new gauge fixing ssdefHdef , where

Hdef is a complete deformation of H0, does not

change the equations of motion.

Remark 1: if different deformations s1a of s0

exist, so that s1as0H0 = 0, then one may gener-

ate different hierarchies corresponding to:

s1aHm = s0Hm+1 (13)

Remark 2: the existence of a recursion oper-

ator R implies:
{
QΩk

,F
}

=
{
QRkΩ0

,F
}

(14)

Although each of the pairsQm,Hn−m corresponds

to different effective Hamiltonians:

Heff
n = −{Q,ψn} = −

{
Q,

{
QΩm

,Hn−m
}}

and different equations of motions, the total de-

formed gauge-fixing term corresponds to the orig-
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inal path integral.

4 Examples

We give a few simple but celebrated examples

of integrable hierarchies and their anti-BRST

transformations.

From: gauge fixing term ssαHa: Ωk = dφa ∧
φb (Ωk)ab (for k = α, β, γ and a, b = 1, 2), with:

Ω11
k = −Ω22

k = 0 (15)

for k = α, β and:

Ω12
β = −Ω21

β = −TS (16)

where TS is the Schroedinger operator and

Ω12
α = −Ω21

α = −1 (17)

Ωab
γ = T ab (18)
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where T is differently defined (as TKdV , or TNLS

or TsG) for (complex) KdV, non linear Schroedinger

or sine-Gordon hierarchies, respectively.

For the non - linear Schroedinger hierarchy:

T 11 = −∂ + 2φ2D−1φ2, T 22 = −∂ + 2φ1D−1φ1,

T 12 = −2φ2D−1φ1, T 21 = −2φ1D−1φ2, with

D−1 = 1
2(

∫x +
∫
x).

linear Schrödinger

↑ s̄β
∂ψ
∂t = −iψ (from s̄0 = s̄α)

↓ s̄γ
∂ψ
∂t = ∂xψ

↓ s̄γ
∂ψ
∂t = i

(
∂xxψ + |ψ|2ψ

)
↓ s̄γ
higher NL Schrödinger
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5 Integrability without ghosts: the

role of constraints

In this section we show that when the Pois-

son two form Ω is exact, the Dirac analysis of

constraints gives us the conditions for a sec-

ond Hamiltonian operator to exist.

Property 1

The variational principles for the following ac-

tions are equivalent [1]:

(i)

Se =
∫
dt(πφ̇−H(π, φ, t)− λaχa) (19)

where χa(π, φ) = 0 are second class constraints.

(ii)

S =
∫
dt(Aη̇ − h(η)) (20)

where we denote by η all the fields on the reduced

phase space.

The reason is that the inverse Ω of ∂iAj−∂jAi

coincides with the two form induced by the Dirac

bracket on the constraint surface.
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Consequences

(c1) A bi-Hamiltonian system η̇ = (Ω0)ηη′δη′h1 =

(Ω1)ηη′δη′h0 is obtained from a unique, singular

action S =
∫
dtL(φ, φ̇, t) which in turn can be

written as (19).

(c2) Since the system of second class constraints

χa can be transformed into a system of first class

constraints φn1 plus gauge fixing constraints φn2 ,

the integrability, by Magri’s theorem, is trans-

lated into gauge fixing invariance.

(c3) the integrability conditions are equiva-

lent to the fact that there exist infinitely many

choices of the gauge fixing constraints φ
n(k)
2 , so

that: {hk, hj}Ωα = 0 and Ωαδhk = Ωβδhα+k−β.

Here, hk = H|χ=0 for the system of constraints

χa with φn1 and a choice k of the fixing φ
n(k)
d and

Ωα is the inverse of the matrix of constraints

{χi, χj} for a specific choice φ
n(k)
d . The field

configurations are related to each other by a D-

transformation [2].
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6 No ghost examples

In this section we give a few examples of bi-

Hamiltonian structures which arise as a result

of changing the gauge fixation.

Example 1 The KdV hierarchy

We can read the two form and the Hamilto-

nian h of the reduced action directly from a first

order action for the potential Ux = u, which is

indeed of the type (20):

S =
∫
dt(

1

2
UtUx − (U 3

x +
1

2
U 2
xx)) (21)

We find: h = −U 3
x + 1

2U
2
xx and O(x, y) =

δ
δU(y)Ux(x)− δ

δU(x)Uy(y) = δy(x−y)−δx(y−x).

Its inverse is θ(x − y) and gives, in terms of u,

the well known Hamiltonian operator d
dx. The

constraints here are of the type χ = πU − f (U).

Example 2 Duality invariant systems

The reduced phase space actions of free elec-

tromagnetism or linearized gravity are of the type
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S =
∫
dt(aη̇ − h(η)). For free electromagnetism

we have [5] η = ATa
i , h0 =

∫
d3x1

2f
2(A) and

ai ∼ fi(A) for an infinite number of choices

of the functions fi, related to each other by Ω

and the recursion operator, which all satisfy (c3).

Here, too, the constraints are of the type χ =

πA − f (A).

7 Conclusions

In this work, we expressed the bi-Hamiltonian in-

tegrability conditions as gauge fixing invariance

in two different ways. The former translates into

cohomological conditions for the BRST differen-

tial. The latter translates into constraints’ anal-

ysis.

Appendix: proof of Theorem 3

We denote Λ0 = s0H0 Then equation (12)

becomes: s1Λ0 = 0 and we can write Λ1 = s1H0

which implies:

14



s0Λ1 = s0s1H0 = −s1s0H0 = 0 (22)

If the cohomology of s0 is trivial at ghost number

−1, thus any s0 - closed form is exact, then it

exists a H1 so that Λ1 = s0H1 Moreover, the

functional H1 is conserved:

{
H1,Heff

}
= {H1,H0}QΩ0

= {H1,H0}QΩ1
= 0

(23)

One continues then to construct Λ2 = s1H1 and

apply the same argument to prove that a term

H2 exists. After m steps one obtains a whole set

of equalities of the form:

Λm+1 = s1Hm = s0Hm−1 (24)

In order to prove the second part of the theo-

rem, we note that the deformed BRST-antiBRST

symmetry is given by sdef = s + sdef where:

sdef = s0 − λ1s1 (25)
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and the complete gauge-fixing term is ssdefHdef

with Hdef = H0 +λH1 +λ2H2 +λ3H3 + ..., for

real λ. The invariance of the path integral re-

duces, modulo s-exact terms, to (s0 − λs1)Hdef =

s0H0. Then:

s0 (Hdef −H0) = (λs1)Hdef (26)

s1s0Hdef = 0 (27)

and includes the “initial conditions” (12). Us-

ing the nilpotency of the sdef differential, s0s1 +

s1s0 = 0 and (24), obtains (ii). q.e.d.
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