
Massive modes in AdS4 / CFT3 correspondence
Relevant papers: G. Arutynov and S. Frolov, arXiv:0806.4940, D. Bykov,arXiv:0904.0208, P. Sundin, arXiv:0811.2775, K. Zarembo,

arXiv:0903.1747

Per Sundin
Humboldt University, Berlin

(per@physik.hu-berlin.de)

Abstract:
On this poster we describe some recent work concerning the fate of
heavy modes on the string theory side of the AdS4/CFT3 correspon-
dence. The correspondence, nowadays dubbed ABJM theory in the
literature, relates type IIA strings in a AdS4 × CP3 background to
certain three dimensional Chern Simons theories. Albeit being of a no-
vel nature, the conjecture share many similarities with the well studied
AdS5/CFT4 holography. Especially, all loop Bethe equations, whose
solutions encode the spectrum of the theory, has been proposed. From
very general arguments, the fundamental excitations in these equa-
tions come in 4+4 solitary Bethe roots. However, as is well known,
critical string theory exhibits 8+8 transverse excitations. This leads
to the natural question - why this mismatch? A possible explanati-
on to the mismatch is that quantum corrections change the analytic
properties of certain Greens functions. The string excitations comes
in light and heavy modes and the bare mass of the light modes is
exactly half of the heavy ones. It could be so that quantum correcti-
ons shift the mass for certain propagators in such a way that its pole
disappears. By studying just one of the massive bosonic coordinates,
Zarembo showed in arXiv:0903.1747 that this is precisely what hap-
pens. This means that the coordinate does not occur as a fundamental
excitation in the worldsheet theory of the string. However, there still
remains three bosonic and four fermionic massive coordinates. What
about these? Will their propagators also exhibit the same change in
analytic properties when loop corrections are taken into account? Un-
fortunately, to be able to answer this question one need to establish
the full quartic Hamiltonian. Due to certain technical issues, this Ha-
miltonian is of a very complicated structure. Nevertheless, equipped
with it one can calculate loop corrections to the massive two points
function. This is something we currently are working on.

1. Strings on AdS4 × CP3

The string propagates on the coset manifold

OSP (2, 2|6)

SO(1, 3)× U(3)
, (1)

with even part being the isometry group of AdS4×CP3. The symmetry group
exhibits a Z4 algebra which can be used to construct the string action. Defi-
ning,

A = A(0) +A(2) +A(1) +A(3) = −g−1 dg, g ∈ osp(2, 2|6) (2)

where the superscript denotes grading, one can construct the string Lagrangian
as

L = g γαβA(2)
α A(2)

β − g κ εαβA(1)
α A(3)

β , (3)

where greek indices are worldsheet indices, i.e σα = (τ, σ).

Symmetries:

• Invariance under global OSP (2, 2|6)
• Invariant under worldsheet diffeomorphism and Weyl scalings
• Fermionic κ symmetry: 24 ⇒ 16 real fermions. .

To fix the bosonic symmetries, it is convenient to introduce, Π = γ0αA(2)
α ,

which allows us to rewrite the Lagrangian as

L = g ΠA(2)
0 − g κ εαβA(1)

α A(3)
β + λ1(Π

2 + (A(2)
1 )2) + λ2(ΠA(2)

1 ), (4)

where λ1 and λ2 are Lagrange multipliers. This way of writing the Lagran-
gian allows us to fix a light-cone gauge without having to worry about the
worldsheet metric.
Introducing x± = t ± φ, where t and φ denotes time and angle variable in
AdS and CP spaces, one imposes

x+ = τ, P+ = 1. (5)

In this gauge the Hamiltonian becomes

δL
δẋ+ = P− = −H. (6)

This gauge fixing has the consequence that the symmetry gets reduced

OSP (2, 2|6) ⇒ SU(2|2)× U(1), (7)

or, more precisely, only the subalgebra su(2|2) ⊕ u(1) commutes with the
light-cone Hamiltonian. As was the case for the AdS5×S5 case, the off shell
symmetry algebra undergoes central extension (see work by Bykov).
After gauge fixing (Weyl, diff and κ), the string has 8B+8F degrees of freedom.
It is convenient to choose representations that transform covariantly under the
bosonic part of the symmetry group (SU(2)AdS × SU(2)CP3

× U(1)). De-
noting the AdS SU(2) with Latin indices and the CP3 SU(2) with Greek
indices, we find the following multiplets:

M=1 Bosons: {Za
b , y} Fermions: {sa

α}
M=1

2 Bosons: {ωα} Fermions: {κ+,a, κ−,a} .

where ωα and κ± are the only fields charged under the U(1). We also expressed
the three transverse AdS coordinates in terms of Pauli matrices, Za

b = zi σ
a
i,b.

To get a feeling for things we can compare it to the more well known AdS5×
S5 case where the bosonic (gauge fixed) isometry group was SU(2)4. There
one had two sets of fermionic and bosonic fields where each set transformed in
different bifundamental SU(2)×SU(2) representations. For the case at hand,
we can roughly consider the Zb

a and sa
β coordinates as ’half of the AdS5× S5

spectrum’. The other coordinates mix, or contract, in a more complicated way
than the AdS5 case. We will see below that the mixing get’s considerably more
complicated for the type IIA string.

2. Strong coupling expansion

The Lagrangian (4) is as it stands highly non trivial. To be able to extract any
useful information we have to consider various simplifying limits. The one we
use is a strong coupling expansion, or equivalently, an expansion in number of
fields. This has the effect that the string Lagrangian expands as

L = L2 +
1√
g
L3 +

1

g
L4 + ..., (8)

where the subscript denotes the number of fields in each expansion term. In
canonical form, this equals

1

2
L = (9)

pi żi + py ẏ + ẇα p̄α + ˙̄ωα pα + is̄aβ ṡaβ + iκ̄+
a κ̇+,a + iκ̄−,a κ̇−a −H,

where we introduced canonical momenta for the bosonic fields. In the above
we have also shifted the fermions, χ ⇒ χ + φ(χ, x, p), so that H (to quartic
order) does not contain any time derivatives of fermionic coordinates. This
shift unfortunately complicates the general structure of the interacting part of
the Lagrangian quite considerably.
The quadratic Hamiltonian is found to be

H2 = −p2
i − 4p̄α pα − p2

y −
1

4

(
y2 + z2

i +
1

4
ω̄α ωα)− 1

4

(
z′2i + y′2 + ω̄′α ω′α

)

−s̄aβ saβ − 1

2

(
κ̄+,a κ+,a + κ̄−,a κ−,a

)− iκ
(
κ−,a κ′+,a + κ̄+,a κ̄′−,a)

+
i

2
κ
(
saβ s′aβ + s̄aβ s̄′aβ)

,

and the cubic part is

√
gH3 = κ

(
κ−,a κ̄′−,b − κ+,a κ′+,b + κ′−,a κ̄−,b − κ̄′+,a κ+,b)Za

b

+2i
(
κ−,a κ′+,b + κ̄+,a κ̄′−,b − κ′−,a κ+,b − κ̄′+,a κ̄−,b

)
Z ′ab

+2iκ
(
κ̄′+,a κ+,b − κ−,a κ̄′−,b + κ′−,a κ̄−,b − κ̄+,a κ′+,b)Pza

b

+2κ
(
εαβ(

s̄aα κ̄′−,a − s̄′aα κ̄−,a) + εab

(
κ+,a s′bβ − saβ κ′+,b))p̄β

+2κ
(
εab(κ̄+,a s̄′bβ − s̄aβ κ̄′+,b

)
+ εαβ

(
κ−,a s′aα − κ′−,a saα))

pβ

−κ
i

4

(
εαβ(

s̄aα κ̄′−,a + s̄′aα κ̄−,a) + εab

(
saβ k′+,b + κ+,a s′bβ

))
w̄β

+κ
i

4

(
εab(s̄aβ κ̄′+,b + κ̄+,a s̄′bβ

)− εαβ

(
κ−,a s′aα + k′−,a saα))

wβ

−
(
εαβ(

s̄aα κ′+,a − s̄′aα κ+,a) + εab

(
κ̄−a s′bβ − saβ κ̄′−,b))w̄′β

−
(
εab(κ−,a s̄′bβ − s̄aβ κ′−,b

)
+ εαβ

(
κ̄+,a s′aα − κ̄′+,a saα))

w′β

+
i

2
y
(
p̄α wα − w̄α pα)

.

There is of course also a quartic part,

gH4 = H4,BBBB +H4,BBFF +H4,FFFF , (10)

in an obvious notation. Unfortunately, H4 is horribly complicated. However,
for the calculation we are performing, only relatively simple parts of the quartic
piece are needed.
Before discussing the analytic structure of the massive propagators let us point
out a few general features of the interacting Hamiltonian. First, and somewhat
obvious by now, we see that a novel feature for the type IIA string is that it
exhibits interactions already at the cubic level. In contrast to, for example, the
AdS5×S5 case, the relevant scattering processes now get additional contribu-
tions. Most evident is that we can get a three vertex loop at order g−1. This
has the consequence that we have to consider two distinct loop diagrams for
the corrected two point functions. This is indeed also what we will do in the
below. However, before that, let us comment on the point particle structure
of the above Hamiltonian. By now it is more or less known that the spectrum
of type IIA supergravity should be reproduced by sending the string length
parameter to zero. Since the supergravity spectrum is fully determined by the
free quadratic part one might ask what the meaning of the surviving higher
order terms is. For example, already at cubic order we see

H3|σ→0 =
i

2
y
(
p̄α wα − w̄α pα)

. (11)

It so turns out that these can be simply removed by performing a unita-
ry transformation of the quantum Hamiltonian (or, an equivalent canonical
transformation on the classical phase space). I.e, for a transformation U, we
can send

H ⇒ e−i U H ei U ,

in such a way that we add additional terms which precisely cancels the unphy-
sical higher order terms. In fact, one can also perform a unitary transformation
for the σ 6= 0 case in such a way that the cubic terms get shifted to quartic
order. This of course comes with the price of additional higher order terms.

3. Fate of the massive modes

We are now in position to start investigating the higher loop corrections to
the massive propagators. The bare propagators are given by,

〈0|T{
y(σ) y(σ′)

}|0〉 >= − 2i

(2π)2

∫
d2p

e−ip̄·(σ̄−σ̄′)

p̄2 − 1 + iε
, (12)

〈0|T{
zi(σ) zj(σ

′)
}|0〉 >= − 2i

(2π)2

∫
d2p

δij

p̄2 − 1 + iε
e−ip̄·(σ̄−σ̄′),

〈0|T{
saα(σ) s̄bβ(σ′)

}|0〉 =
1

2

i

(2π)2

∫
d2p

(p0 + 1)δa
b δα

β

p̄2 − 1 + iε
e−ip̄·(σ̄−σ̄′).

To calculate mass corrections we need to consider two distinct type of loop
diagrams. Due to the poster package of Latex1, which for some reason or ano-
ther, refuse to work with Feynman graphs, we are forced to present them in
the form of equations. For two massive fields A and B, we have

〈Ω|T{
A(x) B(y)

}|Ω〉 = 〈0|T{
A(x) B(y)

}|0〉 (13)

−1

g
〈0|T{

A(x) B(y)
(
i

∫
d2σH4(σ) +

1

2

∫
d2σ d2σ′H3(σ)H3(σ

′)
)}
|0〉.

The first term gives a tadpole diagram and the second a one loop three vertex
diagram.

To be a little more illustrative, let’s consider the simplest case,
〈Ω|T{

y(σ) y(σ′)
}|0〉 which was calculated by Zarembo. From very general

considerations he argued that only the cubic Hamiltonian is necessary for the
calculation. However, nothing is lost by being a tad more careful so let’s con-
sider the full contribution,

Hy = (14)
i

2
√

g

(
p̄α ωα − ω̄α pα

)
y +

1

g

{
− 1

2

(
κ̄+,a κ+,a − κ−,a κ̄−,a

)(1

4
y′2 − 1

4
y2 + p2

y

)

+
1

2
s̄′aβ s′aβ y2 − i

4

(
κ̄′+,a κ̄−,a + κ′−,a κ+,a − κ−,a κ′+,a − κ̄+,aκ̄

′−,a)y2

+
3

4
p2
y y2 − 7

128
y4 +

1

16
y2 y′2 +

3

32
ω̄α ωα y′2 +

1

8
ω̄′α ω′α y2 + 2y2 p̄α pα

−1

8
p2
y ω̄α ωα − 1

128
ω̄α ωα y2 +

1

2
p2
y p2

i −
1

8
y′2 z2

i +
1

8
y2 z′2i −

1

2
p2
y z2

i

}
.

Plugging this into (13) together with some work indeed shows that the pole
disappears as advocated from Zarembo’s calculation. Of course, the above cal-
culation also give rise to divergent parts. These can readily be isolated through
dimensional regularization. Taking into account all massive fields, one should
be able to show that these terms cancel among themselves.

As said, this is not something new. What we are in the progress of investi-
gating is the corresponding calculations for the remaining massive fields, Za

b
and sa

α. The calculation is straightforward but rather tedious. For example,
already for the cubic Hamiltonian one see that things get quite more involved.

4. Summary and outlook

•We have derived the full quartic Hamiltonian for
strings in AdS4 × CP3. This has been done in a fully
covariant notation with respect to the bosonic, gauge
fixed, isometry group SU(2)× SU(2)× U(1).

•The resulting Hamiltonian exhibits interactions alrea-
dy at the cubic order of number of fields. It’s quartic
part is quite involved, mainly due to a fermionic shift
that had to be performed to make the Lagrangian ca-
nonical.

•The string excitations come in light and heavy modes,
with M = 1 and M = 1

2 respectively. A proposed set of
Bethe equations hint that only the light modes consti-
tute fundamental excitations in the scattering theory.

•By continuing a line of research initiated by Zarembo
we analyse the pole structure of the Green functions
of massive excitations. It will probably turn out that
the pole in the loop corrected propagators vanish for
all massive fields.

•Having the full interacting, quartic, theory in a nice no-
tation, a natural continuation of this work is to study
the full scattering matrix. Of course, due to the com-
plexity of the theory, this will be quite a involved task.
If to involved, various closed subsectors can be consi-
dered.

1Or possibly, but of course unlikely, due to user related incompetence.


